ALGEBRA DE BOOLE


ALGEBRA DE BOOLE

Álgebra booleana en informática y matemática, es una estructura algebraica que esquematiza las operaciones lógicas Y, O , NO y SI (AND, OR, NOT, IF), así como el conjunto de operaciones unión, intersección y complemento. El álgebra de Boole fue un intento de utilizar las técnicas algebraicas para tratar expresiones de la lógica proposicional. El Álgebra de Boole es el algebra de 2 valores. Normalmente tienen el valor “0” y “1”, pero también pueden tener los valores de “falso” y “verdadero”. Básicamente es un lenguaje en módulo 2. Las posibles operaciones de las que dispone están sujetas a las leyes de Morgan. El álgebra de Boole fue un intento de utilizar las técnicas algebraicas para tratar expresiones de la lógica proposicional. El Álgebra de Boole es el algebra de 2 valores. Normalmente tienen el valor “0” y “1”, pero también pueden tener los valores de “falso” y “verdadero”. Básicamente es un lenguaje en módulo 2. Las posibles operaciones de las que dispone están sujetas a las leyes de Morgan.


El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " º " definido en éste juego de valores acepta un par de entradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta dos entradas booleanas y produce una sola salida booleana. Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden deducir reglas adicionales, teoremas y otras propiedades del sistema, el álgebra booleana a menudo emplea los siguientes postulados:
  • Cerrado. El sistema booleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.
  • Conmutativo. Se dice que un operador binario " º " es conmutativo si A º B = B º A para todos los posibles valores de A y B.
  • Asociativo. Se dice que un operador binario " º " es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.
  • Distributivo. Dos operadores binarios " º " y " % " son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.
  • Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario " º " si A º I = A.
  • Inverso. Un valor booleano I es un elemento inverso con respecto a un operador booleano " º " si A º I = B, y B es diferente de A, es decir, B es el valor opuesto de A.






No hay comentarios:

Publicar un comentario

Historia de la computación

Historia de la computación Uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas ci...